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Decision making usually involves uncertainty and risk. Understanding which parts of the human
brain are activated during decisions under risk and which neural processes underly (risky) investment de-
cisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging
(fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li,
and Heekeren (in NeuroImage 49, 2556–2563, 2010b). We obtain a time series of three-dimensional im-
ages of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic
semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of
the American Statistical Association 104(485), 284–298, 2009) and identify task-related activations in
space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of
the specific brain regions common for all subjects and represent the high-dimensional time-series data in
easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify
the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification
analysis successfully confirms the estimated risk attitudes derived directly from subjects’ decision behav-
ior.
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1. Introduction

Decision making is a complex process of integrating and comparing various aspects of
choice options. In the past years decision neuroscience has made important progress in ground-
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ing these aspects of decision making in neural systems (Heekeren, Marrett, & Ungerleider, 2008;
Rangel, Camerer, & Montague 2008). Economic decision making is usually described as a form
of value-based decision making, in which individuals are assumed to first evaluate the different
choice alternatives, then compare the different values, and finally choose the one with the highest
value.

Various studies in decision neuroscience (Kable & Glimcher, 2007; Plassmann, O’Doherty,
& Rangel, 2007) investigated neural representations of value, the crucial metric in value-based
decision models. Kable and Glimcher (2007) and Plassmann et al. (2007) indicate that the value
of a choice alternative is represented in a brain network consisting of medial orbitofrontal cor-
tex (mOFC), ventromedial prefrontal cortex (VMPFC), ventral striatum (VST), and posterior
cingulate cortex (PCC). Although most models of decision making share the idea of a value met-
ric that is determined and compared to make a decision, the assumed valuation process differs
significantly from one model to another.

For decisions under risk a crucial metric that is assumed to influence the value of a choice
alternative is the decision maker’s risk attitude. In utility-based models of decision making under
risk, the risk attitude determines the curvature of the utility function, thereby influencing the val-
uation process of risky choice alternatives. In contrast, risk-return models (Sarin & Weber, 1993;
Weber & Johnson, 2009b), incorporate the risk attitude as a weighting factor on the risk met-
ric of the model. So far, only a few studies have tried to identify neural representations of risk
attitude or neural mechanisms reflecting the effect of the risk attitude on the valuation process.
One study found correlations between risk attitude and risk-related brain activity in lateral or-
bitofrontal cortex (lOFC) for risk-averse individuals and in medial OFC for risk-seeking individ-
uals (Tobler, O’Doherty, Dolan, & Schultz, 2007). Another study (Mohr et al., 2010b) found that
inter-individual differences in decision-related brain activity in lOFC and PCC correlated with
inter-individual differences in risk attitudes independent of the current level of risk. The authors
showed that the value signal in the ventrolateral prefrontal cortex (VLPFC) increased with risk
in risk-seeking individuals and decreased with risk in risk-averse individuals, thereby reflecting
the risk attitude.

All the above mentioned studies used the functional magnetic resonance imaging (fMRI)
technique to detect brain regions activated by the stimulus. This technique measures local
changes during neuronal activity in the blood flow, volume and oxygen level, called the blood-
oxygen-level dependent (BOLD) signal. The conventional model for fMRI analysis is the general
linear model (GLM). Although it is frequently used in neuroscience and has led to important in-
sights into the neurobiological processes underlying cognition and emotion, the GLM approach
has some important limitations. First, it focuses on task-related changes in the mean BOLD sig-
nal. Thereby, the GLM neglects information that might be carried by the variability of the BOLD
signal (Mohr & Nagel, 2010). For example, Samanez-Larkin, Kuhnen, Yoo, and Knutson (2010)
found that the relationship between age and the number of risk-seeking mistakes in a risky de-
cision making task was mediated by the temporal variability of the BOLD signal. Second, the
GLM is a model-based approach and can, therefore, only detect effects that were previously
hypothesized and modeled. Recent advances in model-free analysis techniques, such as the ten-
sor probabilistic independent component analysis (T-PICA) developed by Beckmann and Smith
(2005), have the potential to detect effects without any constraints on a priori hypotheses or
modeling.

In line with these approaches we investigate individual differences in risk attitudes with a
model-free technique focusing on the temporal variability of its components. Specifically, we
use the dynamic semiparametric factor model (DSFM) introduced by Park et al. (2009) to reduce
dimensions of the high-frequency, high-dimensional multi-subject fMRI data. DSFM estimates
both spatial factors common for all studied subjects and subject-specific factor loadings varying
in the temporal domain.
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The DSFM factorization technique is set up similar to the T-PICA approach (Beckmann &
Smith, 2005). T-PICA decomposes the full data set into factors in spatial, temporal and subject
domains using a large number of model control variables and parameters. In contrast, the panel
version of the DSFM finds spatial factors common for all subjects and time-varying factor load-
ings which include also the subject specificity. All easily interpretable components are estimated
by using a small number of model parameters. In summary, the parsimoniousness and flexibility
of DSFM allows us to capture the variability of corresponding brain regions by subject-specific
time-series loadings. Further, we hypothesize that the temporal variability of components corre-
sponding to factors in brain regions related to value processing (e.g., mOFC and PC) is correlated
with the risk attitude of individuals.

In the next section, we describe the experimental procedures, the PDSFM methodology and
the risk attitude estimation procedure. In Section 3, we describe the model parameters, the es-
timated spatial factors with time-varying factor loadings and the risk classification based on the
PDSFM estimates. We conclude with a summary and discussion section.

2. Materials and Methods

2.1. Experimental Procedures

We reanalyzed data from a previously published study (Mohr et al., 2010b) with 22 young
volunteers (age 18–35 years, 11 females). All participants were native German speakers, right-
handed and had no history of neurological or psychiatric diseases. Three participants had to be
excluded due to extensive head motion (> 5 mm absolute head movement) or modeling problems
(always chose only one alternative). Another two were excluded due to a different scanning
frequency.

To simulate decision making under risk, participants in the study fulfilled a Risk Perception
and Investment Decision (RPID) task. Each trial of the RPID consisted of two phases: the pre-
sentation of a return stream, followed by a decision or subjective judgment task (see Figure 1).
In investment situations investors are often confronted with past performance data of possible
investments. To mimic this situation, in the first phase a stream of 10 returns from an investment
was sequentially presented for 2 s. These 10 returns provided information about the past per-
formance of a given investment. In the experiment, each return stream was independent of the
others, drawn from Gaussian distribution with varying means (6 %, 9 %, and 12 %) and standard
deviations (1 %, 5 %, and 9 %), resulting in nine different combinations of means and standard
deviations. In the second phase, subjects performed one of three possible tasks in each trial (each
7 s) without knowing in advance which one they would have to perform after the stream.

Three tasks were used to investigate choices as well as perceived risk and subjective expected
return, as specified in recent psychological risk-return models (Weber & Johnson, 2009a). In
the decision task the subjects had to make a choice between an investment with a 5 % fixed
return (safe investment) and the investment represented by the return stream just presented (risky
investment). In the other two tasks subjects reported their subjective expected return (on a scale
from −5 % to +15 %) and perceived risk (from 0 = no risk to 100 = maximum risk) of the
investment represented by the return stream. Subjects performed each task (decision, subjective
expected return, perceived risk) 27 times resulting in 81 trials in total.

Subjects received a flat payment of 10 Euros for their use in the experiment and a virtual
endowment of 100 Euros to invest. The participants were instructed that after the experiment,
one of their 27 choices will be randomly chosen to determine decision dependent payments. If
the subject would choose the safe option in the respective trial, she would get 5 Euros (5 %
of 100 Euros) in addition to the 10 Euros. If a subject would choose the risky option in this
trial, a random return was drawn from a Gaussian distribution with the same mean and standard



www.manaraa.com

492 PSYCHOMETRIKA

FIGURE 1.
RPID task: Subjects were presented with streams of 10 returns from an investment. Then, they either (a) judged the
subjective expected return of the return stream, (b) judged the perceived risk of the return stream, or (c) chose between
an investment with a fixed return of 5 % and an investment with a variable return which was represented by the return
stream (modified from Mohr et al., 2010b).

deviation as the respective return stream. The resulting outcome (return times 100 Euro) was
added to or subtracted from the flat payment.

2.2. fMRI Data

fMRI data were acquired on a 1.5 T Magnetom Sonata fMRI system (Siemens, Erlangen,
Germany) equipped with a standard head coil. We used a vacuum pad to minimize head motion.
Functional images were acquired using a BOLD-sensitive T2*-weighted echo-planar imaging
(EPI) sequence [time resolution (TR), 2500 ms; echo time (TE), 40 ms; flip angle, 90°; field of
view, 256 mm; matrix, 64 × 64 mm; 26 axial slices approximately parallel to the bicommissural
plane; slice thickness, 4 mm].

The data was initially pre-processed with FSL 4.0 (FMRIB’s Software Library, http://www.
fmrib.ox.ac.uk/fsl/). Pre-processing included motion correction and slice-time correction. Ad-
ditionally, images were normalized into a standard stereotaxic space (Montreal Neurological
Institute (MNI), Montreal, Quebec, Canada).

2.3. Panel Dynamic Semiparametric Factor Model

To capture the temporal variability in the high-dimensional fMRI series, which may be re-
lated to individual differences in risk attitude, we use a dynamic semiparametric factor model
(DSFM) which was proposed by Park et al. (2009). DSFM is a model-free multivariate method
that is able to identify activated brain regions (factors) and corresponding low-dimensional time
series (factor loadings) in only one estimation step (Park et al., 2009). In addition, the panel ver-
sion of the DSFM allows determining active brain areas common for multiple subjects, whereas
the individual changes are described by subject-specific time series.

From a statistical point of view, the BOLD signal of all voxels during the whole experiment
can be considered as a multidimensional time series. The following DSFM is calibrated to study
such high-dimensional time series:

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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Yt,j = m0(Xt,j ) +
L∑

l=1

Zt,l ml(Xt,j ) + εt,j , 1 ≤ j ≤ J, 1 ≤ t ≤ T .

def= Z�
t m(Xt,j ) + εt,j = Z�

t A∗Ψt,j + εt,j . (1)

Here, Zt = (1,Zt,1, . . . ,Zt,L)� is an unobservable (L + 1)-dimensional stochastic pro-
cess and m is an (L + 1)-tuple (m0, . . . ,mL) of unknown real-valued functions ml . The
predictors Xt,j ∈ R

d are known, and Yt,j ∈ R is the response variable of interest (the
BOLD signal). The errors εt,j are assumed to be independent of Zt,j and have zero means
and finite second moments. The functions ml are approximated by a space basis Ψt,j =
[ψ1(Xt,j ), . . . ,ψK(Xt,j )]� and corresponding (L + 1) × K matrix of unknown coefficients A∗.
More precisely, [ψ1(Xt,j ), . . . ,ψK(Xt,j )]� denote quadratic tensor B-splines on K equidistant
knots. The estimates of Z�

t and A∗ are found by minimizing

S
(
Ẑt , Â∗) = arg min

Zt ,A∗

T∑

t=1

J∑

j=1

{
Yt,j − Z�

t A∗Ψt,j

}2
. (2)

The minimum is found by the Newton–Raphson algorithm. The parametric part Ẑt captures the
evolution in time, while Â∗ represents the smooth, nonparametrically estimated spatial structure.

In our experiment, the voxel’s index (i1, i2, i3) is the covariate Xt,j , and the normalized
BOLD signal is the dependent variable Yt,j ; j = 1, . . . , J ; t = 1, . . . , T . Due to the compu-
tational limitations (software memory capacity), we used the first part (first 722 observations
including 15 out of 27 trials) of the experiment for our analysis. To further simplify numeri-
cal operations, blank areas were removed from the original data. Thus, the spatial and temporal
dimensions are given by J = 91×92×71 = 594 412 and T = 722, respectively. Note that the co-
variate is time-invariant, and it follows that Xt,j = Xj = (i1, i2, i3) ∈ {(1;91), (1;92), (1;71)}.

Since we want to analyze all tested subjects i = 1, . . . , I in one model to estimate the com-
mon spatial regions responding to the stimulus, we extended (1) to a panel dynamic semipara-
metric factor model (PDSFM),

Y i
t,j = m0(Xj ) +

L∑

l=1

(
Zt,l + αi

t,l

)
ml(Xj ) + εi

t,j ,

1 ≤ j ≤ J, 1 ≤ t ≤ T , 1 ≤ i ≤ I

αi
t,l is the (random) individual effect for subject i on function ml at time point t . For identification

purposes with respect to subjects, we assume that expectation of the individual effects over all
subjects and over all functions ml sums to zero, i.e.,

E

[
I∑

i=1

(
L∑

l=1

αi
t,lml(Xj )|Xj

)]
= 0. (3)

It is reasonable to claim that different subjects have different patterns of brain activation to
external stimuli which can be characterized by different stochastic processes Zi

t . On the other
hand, we can assume that the subjects share essentially the same spatial structure of the brain
which could be characterized by identical ml functions. Our analysis concentrates on the detec-
tion of these common active brain regions over all subjects. Hereinafter, we assume that these
regions are homogeneous for all individuals and, therefore, can be modeled by a joint (average)
spatial factor denoted as ml , l = 1, . . . ,L. The activation differences between the individuals are
captured by their specific low-dimensional time series Zi

t,l .
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For the averaged fMRI series, Y t,j obeys an equivalent relation to (1):

Y t,j = m0(Xj ) +
L∑

l=1

Zt,lml(Xj ) + εt,j , 1 ≤ j ≤ J, 1 ≤ t ≤ T , (4)

with factor loadings Zt,l corresponding to common factors ml .
After the spatial functions are determined, the subject-specific time series Zi

t,l = Zt,l + αi
t,l

can be estimated using the ordinary least square method from the following equation:

Y i
t,j = m0(Xj ) +

L∑

l=1

Zi
t,lml(Xj ) + εi

t,j . (5)

The statistical inference of the whole system is then based on the low-dimensional time-series
analysis for Zi

t,l , i = 1, . . . , I . Park et al. (2009) has shown that the difference between the
inference based on the estimated low-dimensional time series and the “true” unobserved time
series is asymptotically negligible.

Our multi-subject multivariate estimation procedure can be summarized in the following
steps:

1. Take the average Y t,j of Y i
t,j across all subjects i ∈ {1,2, . . . , I } and estimate the com-

mon spatial factors m̂l(Xj ), as in the original DSFM approach (1). For the Â∗Ψt,j , Â∗ is
obtained using the same Newton–Raphson algorithm based on (1) with the only differ-
ence that we do not use the original observations Yt,j , but the averaged Y t,j over different
individuals.

2. Given the common ml(Xj ), estimate the subject-specific temporal factor loadings Ẑi
t,l

from (5). Repeat this estimation procedure for all i = 1, . . . , I .
3. Analyze the joint factors ml(Xj ). Significant active brain regions are defined by the

threshold of 0.5 %- and 99.5 %-quantiles of the empirical distribution function of ml(Xj )

in all voxels.
4. Find the variations between individuals by looking at the factor loadings Ẑi

t,l . Is it possi-
ble to reconstruct subjects’ behavior just by analyzing this low-dimensional time series?

2.4. Behavioral Modeling

According to subjects’ responses, the risk attitude for each individual could be estimated.
We applied the following psychological risk-return model (detailed description can be found in
Mohr et al., 2010b): Importantly, behavioral research has shown that subjective expected return
and perceived risk can vary significantly depending on the context of the decision, challenging
the predictive power of the objective measures expected return and variance of returns (Weber
and Milliman, 1997; Weber, Siebenmorgen, & Weber, 2005).

Vi(x) = μi(x) − φiσi(x). (6)

In this equation Vi(x) defines the value a subject i assigns to an investment x, μi(x) repre-
sents the subjective expected return, σi(x) represents the subject’s perceived risk, and φi is the
individual risk weight.

For each subject, the best individual model for subjective expected return and perceived
risk was estimated using the leave-one-out cross-validation method on the 27 trials. A total of
five different models for subjective expected return, namely, mean, recency, primacy, overweight
< 0 %, and overweight < 5 % and six models for the perceived risk, namely, standard deviation,
coefficient of variation, probability < 0 %, probability < 5 %, range, and coefficient of range,
were compared. The individual risk weight φi was estimated by logistic regression using the best
individual models for μi(x) and σi(x).
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TABLE 1.
Explained variation in percent for the model with different numbers of factors L. The explained variation is averaged
over all 17 analyzed subjects.

L = 2 L = 4 L = 5 L = 10 L = 20

92.07 92.25 92.29 93.66 95.19

The risk attitude can then be measured as value reduction in Euros for maximum risk (the
case when the subjective perceived risk = 100) compared to minimal risk (the case when the
return = 5 %). All subjects were classified as risk averse indicated by a positive risk weight.
However, for seven subjects the risk attitude was low (risk weight ≤ 5) resulting in only a small
influence of risk on value. Following the classification in Mohr et al. (2010b), the seven subjects
with the lowest risk attitude were classified as weakly risk averse. All subjects with risk weight
> 5 were classified as strongly risk averse. A detailed description of the estimation procedure
can be found in Mohr et al. (2010b).

3. Results

In this section we describe the choice of the model parameters and the computational time
for the studied data set. Further, we discuss a selection of estimated factors and corresponding
factor loadings for selected subjects. The classification procedure described in the last paragraph
is based only on the fMRI data and predicts the subjects’ risk aversion with high precision.

3.1. Computational Time

The analyzed raw data are high dimensional (722×594 412 = 429 165 464) and require large
memory (17 × 1.3 GB). On our server equipped with 2.8 GHz CPU and 16 GB RAM memory
loading, the data loading takes around 1 hour. Each step in the Newton–Raphson optimization
in Equation (2) lasts around 1 hour, and approximately 15 steps are needed for convergence
(depending on the model setup). Therefore, the optimization of the model parameters is limited.
After a preliminary analysis (data not shown) we chose quadratic tensor B-splines on equidistant
knots as the space basis Ψj . We found that the increase in the number of knots provides better
fit, but extends the computational time (quadratic growth). Thus, the number of knots in the three
directions were set to 14,14 and 12, which is a trade-off between the best possible resolution
and a reasonable computational time. With this parameter choice, 250 = (91 × 92 × 71)/(14 ×
14 × 12) points correspond to one three-dimensional quadratic B-spline basis function. The total
computational time is then 22 hours.

3.2. Model Parameters

The most important parameter in our model is the number of factors ml as well as the number
of corresponding factor loadings Zt,l , denoted by L; l = 1, . . . ,L. It is worth noting here that the
increase of L does not extend significantly the computational time (linear growth). The choice of
L is based on both the specificity of factors’ interpretation and the averaged explained variance
by factors, which is given by

EV (L) = 1 −
∑T

t=1
∑J

j=1{Yt,j − ∑L
l=0 Zt,lml(Xt,j )}2

∑T
t=1

∑J
j=1{Yt,j − Ȳ }2

.

Table 1 shows the averaged explained variation for different numbers of factors. Here, only
slight differences between the explained variation for L ≥ 2 can be observed. The fMRI signals
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Yt,j were explained mostly by the null-factor and the first two factors: m̂0(Xt,j )+Zt,1m̂1(Xt,j )+
Zt,2m̂2(Xt,j ). The relatively small effects of the functions ml for l ≥ 2 are due to the small
differences of activation in the selected regions. The inclusion of a greater number of factors
leads to detection of the important areas for decision making under risk. We choose L = 20,
which allows for relatively low complexity and an explicit interpretation of the functions m̂l .
Residual analysis, derived from the model with L = 20, are shown in Appendix A in Figures 6, 7
and 8.

3.3. Factors m̂l

In our study we are looking for spatial maps which undergo significant changes in BOLD
signal during the experiment. These spatial maps (factors) determine the brain regions while
the time evolution and subject specificity are captured by the corresponding factor loadings
Zi

t,l . After applying the PDSFM technique, we estimated 20 spatial factors. Six of them (m̂l ,
l = 5,9,12,16,17,18) correspond to brain areas mOFC and Parietal Cortex (PC) which were
already found in decision making contexts (see Heekeren et al., 2008; Rangel et al., 2008 for a
review). Figure 2 shows voxels with the largest values m̂l(Xj ) ≥ 99.95 % of the empirical quan-
tiles for these six factors in white. Factors m̂5, m̂12, m̂16, m̂17 and m̂18 have the largest values
in the mOFC, located in the bottom frontal part of the brain. Plassmann et al. (2007) showed
that mOFC is associated with the value of a choice option. In other words, these five factors, m̂5,
m̂12, m̂16, m̂17 and m̂18, describe different areas in the mOFC, which are exposed to the largest
activation changes during the experiment. Factors m̂5, m̂16, m̂17 and m̂18 differ in their vertical
positions (as shown in Figure 2(a), (c)–(e) in the far left graphics), where factors m̂5 and m̂16
cover different vertical parts. This decomposition is possible due to the high resolution scanning
analyzed here and deserves further research. Factor m̂9 represents the PC situated at the inter-
section of visual, auditory, and tactile cortices which play a crucial role in selective attention
(Behrmann, Geng, & Shomstein, 2004). Beside these interesting factors connected with decision
making, we detected other spatial maps that correspond to brain areas previously associated with
motoric responses and visual perception. These maps are likely unrelated to the decision making
process within the task but confirming the activity of regions which were necessary to provide
the answer by pushing a button.

Herewith, we have shown that the estimated function m̂l , l = 1, . . . ,L in our model represent
those brain regions which were expected to be involved during the experiment (visualization,
motoric, and value-of-choice areas). The activity of these regions changes over the subjects and
with time. This variability is described by the subject’s specific factor loadings Zi

t,l which are
discussed in the next session.

3.4. Factor Loadings Ẑt,l

The dynamics and subject specificity are jointly represented by the low-dimensional time
series Ẑi

t,l , i = 1, . . . , I ; l = 1, . . . ,L. These subject-specific Ẑi
t,l correspond to the individual

temporal differences of the activated brain regions in m̂l . For better illustration we have selected
two extreme subjects: 12 (with the smallest risk attitude) and 19 (with the largest risk attitude).
Both shown time series Ẑ12

t,l and Ẑ19
t,l for l = 12,18 show a high fluctuation around their mean

value (Figure 3).
To investigate the activity behavior of the risk-related factors, we studied the corresponding

factor loadings in the time point of risky decision and in the following three observations. In
particular, to visualize the activities after the stimulus, we plotted the sum over all subjects of the
normalized mean differences of these factor loadings (see the Figure 9 in Appendix B). Whereas
some of the loadings tend to react positively to the stimulus (Z5 and Z18), other loadings show
a positive-negative fluctuation pattern (Z12, Z18, and Z9). Understanding those differences for
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FIGURE 2.
Selected estimated functions m̂l , l = 0, . . . ,L with L = 20. (a) Estimated function m̂5 with largest values in medial
orbitofrontal cortex (mOFC); (b) m̂9 with largest values in parietal cortex (PC); (c) m̂12 with largest values in mOFC;
(d) m̂16 with largest values in mOFC; (e) m̂17 with largest values in mOFC; (f) m̂18 with largest values in mOFC.
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FIGURE 3.
Factor loadings Ẑt,12 (top) and Ẑt,18 (bottom) for weakly risk-averse Subject 12 (blue line, left panels) and for strongly
risk-averse Subject 19 (green line, right panels) during the experiment (722 time points). Red points correspond to the
time points of stimuli. (Color figure online.)

FIGURE 4.
Detailed view of factor loading Ẑt,1 for Subject 12 (blue line) with vertical lines at time points of stimuli of three different
tasks: decision (red), subjective expected return (green) and perceived risk (black). (Color figure online.)

different mOFC parts picked up in the model goes beyond the scope of this paper and deserves
further research. A better insight into the dynamics of the time series can be achieved while
looking at the responses after the stimuli only and separating the subjects into the weakly and
strongly risk averse. For an easier interpretation, first a detailed view of Ẑ12

t,12 in 200 (out of 722)
data points with three highlighted different stimulus types (i.e., decision, subjective expected
return, perceived risk) is shown in Figure 4. The most important values of the factor loading
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FIGURE 5.
Reaction to stimulus for factor loadings Ẑt,12 (top) and Ẑt,18 (bottom) for weakly risk-averse Subject 12 (blue line, left
panels) and strongly risk-averse Subject 19 (green line, right panels) during the whole experiment (45 stimuli). (Color
figure online.)

Zt,l are the next three observations after each stimulus, measured up to 7.5 seconds after each
stimulus, as the hemodynamic response has its peak usually around 6 seconds after the stimulus
onset. Figure 5 shows these responses for studied factor loadings and representative subjects.

Formally, we plotted �Ẑs,l
def= Ẑs+τ,l − Ẑs,l against t , where s is the time when a stimulus

was given and τ = 1,2,3 are the next three observations. In Figure 5, one can observe that
the responses to the stimulus of the weakly risk-averse individual show a significantly different
volatility than the responses of the strongly risk-averse individual. We found this volatility pattern
in all factor loadings corresponding to the selected factors, namely, for l = 5,9,12,16,17,18
(see Appendix C, Figure 10).

3.5. Risk Classification

Now that we have reasonably interpreted the estimated factors m̂l and have described the
behavior of the factor loadings Ẑi

t,l , we next try to connect our findings with the risk attitude of a

subject. Without knowing the subjects’ answers, based only on a low-dimensional Ẑi
t,l represen-

tation of BOLD signal, we develop a classification method which can predict the risk attitude. For
this purpose we use the functions �Ẑi

t,l , l = 5,9,12,16,17,18 and i = 1,2, . . . , I , since they
correspond to the brain activity of factors, which are linked with utility and decisions under risk.

As described in Section 2, there were three different types of answers which subjects had
to make. Since risk attitude influences the value of a choice alternative, we considered �Ẑi

t,l ,
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TABLE 2.
Classification rates of the SVM method using standard deviation (left) and mean (right) of the �Ẑt,j , j =
5,9,12,16,17,18.

STD Estimated MEAN Estimated

Strongly Weakly Strongly Weakly

Data
Strongly 0.97 0.03

Data
Strongly 0.70 0.30

Weakly 0.25 0.75 Weakly 0.55 0.45

l = 5,9,12,16,17,18 only after the decision task (where subjects decided between a risky or
safe investment). Further, we use only the three observation points after the stimulus in the clas-
sification analysis (see paragraph Factor loadings Ẑt,l). Since the observations are not exactly
at the time points of the BOLD peak and we want to capture the variability in the stimulus re-
sponses, the average value of the responses after each of the 15 decision exercises is calculated:
�Ẑi

s,l = 1
3

∑3
τ=1 �Ẑi

s+τ,l , l = 5,9,12,16,17,18. Here, �Ẑi
s,l denotes the average reaction to

the decision stimulus after the task s, for loading l and subject i. Further, we calculated the vari-
ance of �Ẑi

s,l and observed higher variability for weakly risk-averse subjects than for strongly
averse subjects (see Appendix D, Figures 11–16). In order to confirm that finding, these six
variables, corresponding to l = 5,9,12,16,17,18, were chosen as the input variables for the
classification algorithm.

In the next step, we classify studied subjects based on the standard deviation of the data ex-
tracted from the BOLD signal. Classification analysis of the subjects was conducted via Support
Vector Machines (SVM), (Cortes & Vapnik, 2005). In the learning step, strongly risk-averse sub-
jects were labeled with 1 and weakly risk-averse subjects with −1. The estimated risk attitude
described in Behavioral Modeling were used for the validation of the classification predictions.
In order to avoid overparametrization and overly optimistic results, we applied the double cross-
validation method to tune the SVM and estimate the classification rate. The algorithm can be
described as follows

1. Separate the data into a training set and a test set (leave-one-out procedure).
2. Apply the leave-one-out cross-validation method on the training set only and tune the

algorithm.
3. Classify the test data.
4. Repeat Steps 1–3 for all the different test sets.
5. Average the classification rate over all iterations in Step 4.

Using the standard deviation of the differences and the optimal SVM parameters, the clas-
sification rate was 97 % for strongly risk-averse individuals and 75 % for weakly risk-averse
individuals (Table 2). We compare our classification performance with an SVM classifier, tak-
ing as input variables the means of the averaged reaction to the decision stimulus �Ẑt,l . Ta-
ble 2 clearly shows that the mean of the averaged reaction does not reflect the differences be-
tween weakly and strongly risk-averse subjects. These two classes can be distinctly identified
by their volatility. Thus, the risk attitude of a subject is derived directly from the time series
Ẑi

t,l , l = 5,9,12,16,17,18—the low-dimensional representation of the BOLD signals series.
The class imbalancing in this two-step procedure ranges from 33 % (10 vs. 5) up to 47 % (8 vs.
7) and should not lead to a significant bias of the classifier, which is confirmed by high, averaged
classification rates.

We have provided the SVM classification using a wide range of prior parameters to the
Gaussian kernel, the capacity C and the radial basis coefficient r . Table 3 summarizes the results
obtained by using different values of these parameters. The classification rates are the averages
over the parameter ranges.
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TABLE 3.
Classification rates of the SVM method using different values of parameters r and C for mean and standard deviation.

Rate r C

Std 0.81 0.6–1.00 1–80
Mean 0.60 0.02–1.00 1–80

TABLE 4.
Classification rates of the SVM method using different values of parameters L for standard deviation.

L = 2 L = 4 L = 5 L = 10 L = 20

– 61.40 58.82 58.82 87.13

3.6. Classification Results for a Different Model Specification L

We analyzed the robustness of the classification results with respect to the parameter L

defining the number of factors. For the case L = 2, none of the two factors m̂l represents the
value-of-choice areas. The model specification with L = 4 detects two factors with the highest
values in the mOFC. In the model with L = 5, three factors are attributed to the value-of-choice
areas (mOFC). For the model specification with L = 10 we find five factors with the highest
values in the mOFC and Amygdala. In the next step the classification analysis, as described in the
previous paragraph, was done for all different setups. The classification results are summarized in
Table 4. We can conclude our findings as follows. The inclusion of a larger number of factors (2 <

L ≤ 10) does not necessarily increase the classification performance. Models with a relatively
low number of factors (L ≤ 10) do not reveal a good classification performance implying higher
order models are needed to capture the dynamics of the relevant brain regions and to achieve a
reasonable classification rate (at the cost of parsimony of the model and the computational time).

4. Discussion

Decision making is a complex process consisting of valuation, comparison, and the final
choice. Decision neuroscience has frequently investigated neural representations of value, the
key metric in the decision models. Previous studies showed that the BOLD response in VMPFC,
PCC, VST, mOFC and VLPFC are activated during the valuation process. For decisions under
risk, risk attitude is the crucial metric that is assumed to influence the value of a choice alterna-
tive. Up to now, only few studies tried to identify neural representations of risk attitude; so far
correlated regions have been found in lOFC, mOFC, PCC, and VLPFC.

The usual technique used in neuroscience to evaluate the fMRI data is the GLM approach.
This approach has some limitations that are crucial for the identification of brain regions asso-
ciated with risk attitude. GLM focuses on the changes in the mean BOLD signal and hereby
neglects the information in the variance of the signal. Further, GLM is a model-based technique
that is able to detect only pre-defined effects.

In this paper, we applied a novel nonparametric statistical model to analyse fMRI data from
an experiment associated with risky decisions. Our panel dynamic semiparametric factor model
(PDSFM) is a model-free, dimension reduction technique with a minimum number of model
parameters. DSFM provides spatial maps common for all studied subjects and time-variant factor
loadings which are specific for each individual. Both spatial maps and factor loadings are very
easy to interpret. Statistical inference of the whole high-dimensional data set is based only on the
low-dimensional time series (factor loadings).
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Applying the PDSFM, we analyzed an fMRI experiment with 17 subjects, each with 722 im-
ages of 91 × 109 × 91 voxels. We identified 20 spatial factors m̂l , six of them corresponding to
mOFC and PC which were already found in decision making context. Other spatial factors were
associated with brain areas playing roles in motor responses and visual perception which were
also related to the experiment. Our identified 20 spatial factors, however, did not contain any acti-
vation regions previously reported by Mohr et al. (2010b) using the GLM approach. Only the PC
was identified in a recent meta-analysis on neural representations of risk (Mohr, Biele, & Heek-
eren, 2010a). Mohr and colleagues (2010b) identified neural representations of perceived risk
in the anterior (AI) insula, neural representations of subjective value in medial prefrontal cortex
(MPFC), dorsolateral prefrontal cortex (DLPFC), and ventrolateral prefrontal cortex (VLPFC),
and neural representations of risk attitude in lOFC and PCC. There are at least three possible
reasons that could account for the different results. First, Mohr et al. (2010b) concentrated their
analysis on a priori pre-specified regions which were expected to show correlations with risky
decisions. Second, the results from Mohr et al. (2010b) were based on regressors for the decision
trials, which capture only around 5 % of the time series. And, finally, the regressors for perceived
risk and subjective expected return model use very specific effects, namely the correlation be-
tween regressors and the BOLD response on a trial-by-trial basis. It is, therefore, very unlikely
that the first 20 factors, identified in a PDSFM using only part of the data, capture the described
very specific effects based on only 5 % of the high-dimensional time series.

Further, we provided the statistical analysis of factor loadings corresponding to the spatial
maps in mOFC and PC. We observed that the variability in the responses after the decision stimuli
is significantly higher for weakly risk-averse individuals than for strongly risk-averse individuals.
We used the variance of these stimuli responses as input for the classification algorithm. Very
high classification rates (97 % and 75 %) were obtained with the SVM classifier by applying
the double cross-validation algorithm. We classified the risk attitude of the subjects from the
low-dimensional representation of the brain activities without knowing the subject’s answers.
Herewith we have shown that our PDSFM approach is able to detect the neural representations
of risk attitude and to classify the weak and strong averse individuals by their time-dependent
factor loadings.

In the literature, the group fMRI analysis is usually carried out by the mixed effects func-
tional model (Wang, 1998 and Guo, 2002). Mumford and Poldrack (2007) describe the mixed
effects model in their application of it to fMRI data. Compared to their works, there are several
differences in our model. First, their works mainly focus on the univariate (or low-dimensional)
time series, while we focus on the full high-dimensional time series. Specifically for the fMRI
data analysis, Mumford and Poldrack (2007) perform the analysis based on some (pre-specified)
voxel of special interest, while we try to find both the temporal dynamics and the regions of
special interest (w.r.t. risk attitude in our example) directly based on the high-dimensional fMRI
time series without any a priori knowledge. Second, as illustrated via a political opinion study
discussed in Mumford and Poldrack (2007), the mixed effect model considers the case where
subjects participating in the experiment are drawn from several subgroups with their own group-
specific effects. Contrary, we assume that the subjects participating in our experiment were drawn
randomly from the population without considering any special group effects. Our work, as far as
we know, is one of the first works on panel high-dimensional time-series analysis with multiple
subjects. One possible way of extending it to the mixed effect situation is to add the group effect
to the time. Our approach may be applied to a wide spectrum of similar studies and can serve as
a useful model-free technique for fMRI analysis.
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Appendix A. Residual εi
t,j Analysis

FIGURE 6.
Boxplots of random subsets (sample size 3 × 107) from εi

t,j
(4.3 × 109 points) for all 17 analyzed subjects. Kurtosis

exceeds 10.

FIGURE 7.
Histograms of random subsets (size 3 × 107) from εi

t,j
(4.3 × 109 points) for subjects i = 1,2,3,4,5,6,8,9 (upper

panel) and i = 10,11,12,15,16,17,18,19 (lower panel), respectively. Normality hypothesis (KS test) for standardized
εi
t,j

rejected for all subjects at significance level 5 %.
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FIGURE 8.
QQ plots of random subsets (size 3 × 107) from εi

t,j
(4.3 × 109 points) for subjects i = 1,2,3,4,5,6,8,9 (upper panel)

and i = 10,11,12,15,16,17,18,19 (lower panel), respectively. (Color figure online.)
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Appendix B. Activity of Risk-Related Factors

FIGURE 9.
Sum over all subjects of the normalized mean differences of the factor loadings Z5, Z12, Z16, Z16, Z18, Z9 correspond-
ing to the risk-related factors, shown in the time point of decision task and the next three following time points. (Color
figure online.)
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Appendix C. Reaction to Stimulus for Weakly and Strongly Risk-Averse Subjects

FIGURE 10.
Reaction to stimulus for factor loadings Ẑt,l , l = 5,9,16,17 (from the top) for weakly risk-averse Subject 12 (blue line,
left panels) and strongly risk-averse Subject 19 (green line, right panels) during the whole experiment (45 stimuli). (Color
figure online.)
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FIGURE 10.
(Continued.)
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Appendix D. Plots of Average Responses to the “Decision Under Risk” Stimulus

FIGURE 11.
Average responses to the “Decision under Risk” stimulus in factor loading Z5 for the weakly risk-averse group (top, blue
lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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FIGURE 12.
Average responses to the “Decision under Risk” stimulus in factor loading Z9 for the weakly risk-averse group (top, blue
lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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FIGURE 13.
Average responses to the “Decision under Risk” stimulus in factor loading Z12 for the weakly risk-averse group (top,
blue lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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FIGURE 14.
Average responses to the “Decision under Risk” stimulus in factor loading Z16 for the weakly risk-averse group (top,
blue lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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FIGURE 15.
Average responses to the “Decision under Risk” stimulus in factor loading Z17 for the weakly risk-averse group (top,
blue lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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FIGURE 16.
Average responses to the “Decision under Risk” stimulus in factor loading Z18 for the weakly risk-averse group (top,
blue lines) and strongly risk-averse group (bottom, green lines). (Color figure online.)
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